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SUMMARY 
 
We show how clustering algorithms can ensure that the core intervals that are pertinent to specific objectives of a sampling campaign 
are actually sampled. We also show how clusters can be validated prior to sampling with auxiliary data not used for the cluster 
analysis.  
We chose to target our core sampling to ensure that both clay poor and clay rich intervals of the Springbok Sandstone are sampled. 
The clay phases in the Jurassic Springbok Sandstone generally do not exhibit a prominent gamma ray signature and are therefore 
poorly defined in wireline logs. Similar, hydrogeological properties of the Springbok Sandstone are not well defined through wireline 
logs. This introduces uncertainty to groundwater models of the Springbok Sandstone. Hence, a better understanding of the clay 
distribution is thought to be a key to improve the definition of the hydrogeological properties of the Springbok Sandstone. 
We applied our sample targeting approach to five study wells from the Surat Basin in Queensland. We tailored the application of the 
cluster analysis to our working hypothesis that the variability of hydrogeological properties of the Springbok Sandstone is controlled 
by the presence and type of clays, rather than compaction. This informed our choice of wireline logs to include in the clustering 
(nuclear logs) and of logs to be used for control purpose (resistivity logs, spontaneous potential).  
We show that identification of five clusters was the most useful number towards our sampling objectives. This allowed for example 
to exclude coal and siderite layers from sampling for clay analysis and to focus on the differentiation of the clastic sediments in the 
formation. Further, we show that certain clusters correlate with resistivity and spontaneous potential log signatures. 
The correlation between the categorical clusters based on nuclear logs and continuous wireline logs not used in the cluster analysis 
allowed us to interpret the meaning of the clusters in the context of our project and target our sampling to ensure that all clusters are 
represented in our sample set. 
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INTRODUCTION 
 
 
This contribution is part of a larger project that aims to link wireline data, laboratory based clay characterisation and 
porosity and permeability measurements to build an integrated petrophysical model of the Springbok Sandstone.  
Coal seam gas production from the Walloon Coal Measures, Surat Basin, does necessitate a better understanding of the 
hydrogeological properties of the overlying Springbok Sandstone. The Late Jurassic Springbok Sandstone is a 
formation in the Surat Basin, Queensland (Power and Devine, 1968). According to the definition reference (Exon, 
1976) “[t]hroughout the basin the sequence consists mainly of sandstone, with some interbedded siltstone and mudstone 
and a few thin seams of coal.” The type section in BMR Mitchell 3 (38m to 50m) consists mostly of feldspathic 
sublabile to lithic sandstones. Occurrence of interbedded siltstones and mudstones is described as minor (Green, 1997). 
Indeed, classical lithofacies identification based on density (RHOB) and natural gamma ray (GR) cutoffs results in 
rather homogenous classification of the formation as sandstone (e.g. Hamilton et al., 2014). Applying these cutoffs to 
the study wells of this contribution will lead to >80% of the formation being classified as sandstone (see Levy and 
Gaede, this conference volume). 
Further, the Springbok Sandstone is one of the predominant host stratigraphic units of the Adori-Springbok Aquifer, 
which in turn is one of five major aquifers of the Great Artesian Basin (Ransley et al., 2015). In this context Ransley et 
al. (2015) classify the Springbok Sandstone as a partial aquifer. Recent groundwater modelling studies refer to the 
Springbok Sandstone either as a major aquifer (e.g. OGIA, 2016) or as a moderate aquifer (Underschultz et al., 2016). 
 
However, recent exploration activity and testing has led to a growing appreciation of the Springbok’s heterogeneity in 
regard to lithology (e.g. Gallagher, 2012) and hydrogeological properties (e.g. OGIA, 2016). The Underground Water 
Impact Report for the Surat Cumulative Management Area 2016 (OGIA, 2016, page 44) states that “The Springbok 
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Sandstone is highly variable in nature. At some locations it is an important aquifer but in other places it is highly 
compacted and has very low permeability.” This statement suggests that the hydrogeological properties of the 
Springbok are primarily controlled by compaction. In our project, we will test the hypothesis that the hydrogeological 
properties, especially permeability, are primarily controlled by lithology (i.e. clay content and type). For completeness it 
should be noted that this hypothesis is also considered in the Underground Water Impact Report for the Surat 
Cumulative Management Area 2016 (OGIA, 2016, page 34): “The Springbok Sandstone and the Walloon Coal 
Measures show a particularly high degree of variability. At many locations, the Springbok Sandstone has a very high 
content of mudstone and siltstone with very low permeability. This tends to locally isolate groundwater contained in the 
formation.” 
In order to build a petrophysical model of the Springbok Sandstone that addresses clay content and type it is necessary 
to sample and analysis a representative set of constituency lithologies. Towards this end we are utilizing a multi-sensor, 
multi-well dataset for electrofacies classification based on k-means clustering (MacQueen, 1967). We identified five 
clusters based on four nuclear logs available in all study wells to guide the sample selection. Identification of five 
clusters was the most useful number towards our sampling objectives. This allowed for example to exclude coal and 
siderite layers from sampling for clay analysis and to focus on the differentiation of the clastic sediments in the 
formation.  
Further, we show that certain clusters correlate with resistivity and spontaneous potential log signatures. The correlation 
between the categorical clusters based on nuclear logs and continuous wireline logs not used in the cluster analysis 
allowed us to interpret the meaning of the clusters in the context of our project and target our sampling to ensure that all 
clusters are represented in our sample set. 
 
 

METHOD AND RESULTS 
 
 
Available Data  
 
The sampling campaign is part of a study to investigate the clay content and distribution as well as the porosity and 
permeability of the Springbok Sandstone. For these purposes 100 samples for clay analysis and 50 samples for porosity 
and permeability analysis had to be chosen from five study wells. The available core is shown in Figure 1. Close to 350 
meters of core are available and as stated above clay poor and clay rich parts of the Springbok Sandstone are not easily 
distinguished in the natural gamma ray logs. Further, identification of clay rich intervals by core logging is time 
consuming and can be subjective. In this contribution we show how we used cluster analysis to identify sample 
locations that are suitable for the project objectives.  
 
 

 
Figure 1: Springbok interval in the five study wells with natural gamma ray (GR) log and available core (black vertical lines). 
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Wireline logs were acquired over the entire Springbok interval for all five study wells. The following four nuclear logs 
were acquired in all study wells: natural gamma ray radiation (GR), bulk density (RHOB), photoelectric effect factor 
(PEF) and thermal neutron porosity (TNPH). Thermal neutron porosity was processed for limestone matrix in all five 
wells. Further, spontaneous potential, resistivity logs and sonic logs (various types) are available in all wells. Elemental 
logs (Lithoscanner) and dielectric logs are available in one study well only (StudyWell-1 hereafter). All study wells 
were drilled using water-based mud with KCl as a mud additive.  
 

The first objective of our study is to identify the dominant 
clay phases and delineate their distribution in the 
Springbok Sandstone. Hence, enabling a more detailed 
differentiation of the lithofacies in the formation. We have 
chosen to use the four nuclear logs that are available in all 
five wells (GR, RHOB, PEF and TNPH) as the features for 
the cluster analysis. These four nuclear logs are commonly 
used for clay quantification either from individual logs or 
cross-plots (see for example Ellis and Singer, 2007, chapter 
22). Elemental logs have the potential to be a powerful 
clay-typing tool but they are only available in StudyWell-1. 
The correlation between the clusters and the interpreted 

elemental logs were used as a first pass lithological identification of the clusters prior to sampling. The second objective 
of our study is to investigate the link between clay type and distribution and permeability of the formation. Therefore, 
we also considered the correlation between the clusters and the resistivity logs (i.e. difference between deep and shallow 
resistivity) and the spontaneous potential log. Figure 2 shows the pertinent logs for this contribution. 
 
 
 

 
 
Data Conditioning  
 
Cluster analysis is a way of solving a classification problem. The features (or variables) used in our example are well 
log data for natural gamma ray radiation (GR), bulk density (RHOB), photoelectric effect factor (PEF) and thermal 
neutron porosity (TNPH). The value ranges across these features differ by two orders of magnitude, which can lead to 

Figure 2: Summary of logs used as features in the cluster 
analysis and logs that were not used in the cluster analysis. 

Figure 3: Cluster analysis based on GR', RHOB', PEF' and TNPH'. Visualised as a 3D scatter plot in GR, RHOB and 
PEF space with colours showing cluster assignment of data points and red circles showing the cluster centroids. 
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the feature with the broadest value range to dominate the classification. Further, some of the underlying optimizations 
algorithms used for the classification (e.g. gradient descent) will converge faster for a set of scaled features. In order to 
address these problems we use mean normalisation to scale the original features x 
 

𝑥! =   
𝑥 − 𝑥
𝜎

 
 
where  𝑥! is the scaled feature, 𝑥 is the mean of the feature values and σ is the standard deviation of the feature values. 
 
 
Cluster Analysis 
 
Cluster analysis aims to subdivide a dataset into so-called "clusters" based on a similarity criterion. In this contribution, 
we use the k-means clustering algorithm, which employs a similarity criterion based on Euclidian distance. The feature 
space X for our application is four-dimensional with the mean normalised nuclear logs (GR’, RHOB’, PEF’ and 
TNPH’) as coordinate axis. The number of clusters k is in principle arbitrary and only limited by the number of data 
points (or observations) m, so that k<m. Each cluster has a cluster centroid 𝜇!, 𝜇!,…   𝜇!. The cluster centroids are 
initialised at the beginning of the clustering algorithm. The initial set of cluster centroids 𝝁 can be chosen by various 
methods, such as random selection of k observations from X. We used the k-means ++ algorithm to seed the cluster 
centroids (Arthur and Vassilvitskii, 2007). 
 
Given the initial set of cluster centroids 𝝁, the k-means algorithm aims to minimise the squared sum of the Euclidian 
distances between data points x and centroid location for each cluster Ci, summed over all clusters: 
 

min ∥   𝒙 −   𝜇! ∥!
  

!"!!

!

!!!

   

 
This is achieved by an iterative two-step process:  
 

1. Each data point (i.e. observation) is assigned to the “nearest” cluster centroid, by applying the Euclidian 
distance similarity criterion. 

2. The centroids are moved or “updated” by calculating the mean of each cluster. 
 
Applied to the same data set multiple times, the k-means algorithm can return different cluster centroid locations and 
thereby assign some data points to different clusters. This can be due to poor choice of the set of initial cluster centroid 
locations or the fact that the minimisation found a local minimum instead of a global minimum. This can be 
circumvented by running k-means repeatedly and choosing the set of clusters with the lowest squared sum of Euclidian 
distances between data points and centroid locations summed over all clusters. We have run 50 repeats for our cluster 
analysis, although a number of 5 repeats seems to be sufficient to obtain persistent centroid locations for this data set. 
 
 
Choice of Number of Clusters k 
 
The number of clusters can be freely chosen and should be guided by the objectives of the analysis. For our sampling 
campaign we had two practical considerations: 
 

1. Improve wireline-based differentiation of the bulk of clastic sedimentary rocks of the Springbok interval in 
comparison to cut-off based techniques (e.g. GR cut-offs). 

2. Automatically identify rare or “outlier” lithology (in this case coal and siderite). 
 
Figure 3 shows the wireline data for StudyWell-1 as a 3D scatter plot in GR, RHOB and PEF space. The colours 
represent cluster assignment of data points and red circles show the cluster centroids. 
The bulk of the data points (>90%) lie within the following intervals 2.1 g/cm3 < RHOB < 2.6 g/cm3, 45 GAPI < GR < 
100 GAPI and 2.0 < PEF < 4.0. This bulk of the data cloud is subdivided into three clusters. Using only 4 clusters in 
total will reduce the differentiation of this “bulk of data”, in particular the differentiation between Cluster 1 and 5 (see 
below for cluster description). The “outlier” lithologies can be easily seen as the low-RHOB branch (turquoise) and the 
high-PEF branch (beige) of the point cloud and are subsequently labelled as Cluster 4  (turquoise) and Cluster 2 (beige). 
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Correlation of Clusters and Continuous 
Log Data not used during Cluster Analysis  
 
We visualise the correlation of the categorical 
clusters and the continuous log data not used 
in clustering with the help of box plots 
(Figures 4 and 5). The boxes depict the data 
range with the bottom and top of the box 
representing the first and third quartile and the 
red vertical line representing the second 
quartile or median. The “whiskers” (vertical 
lines extending from the box) represent the 
highest and lowest data point still within the 
1.5 x IQR or interquartile range. Outliers 
beyond 1.5 x IQR are represented as red 
crosses. The bottom panels in Figures 4 and 5 
show the amount of data points assigned to 
each cluster. The clusters are sorted by 
descending cluster size. The total amount of 
data points differs between Figures 4 and 5, as 
the sampling intervals of the tools we are 
correlating to the clusters are different. 
 
Two measures are used as proxies for 
formation permeability: (i) the difference 
between the deep and shallow resistivity logs 
and (ii) the spontaneous potential log. We did 
not attempt to interpret these two measures in 
absolute terms and focused on the relative 
changes between the clusters. As can be seen 
in Figure 4 Cluster 1 stands out in this 
context. In regard to the difference between shallow to deep resistivity the median value of the data points assigned to 
Cluster 1 is 4.26 Ω m and have maximum value of 14.48 Ω m. The median and mean values for the entire Springbok 
Sandstone are 0.21 Ω m and 1.15 Ω m, respectively. The median spontaneous potential value for Cluster 1 is -144.5 
mV, whereas median and mean values for entire formation are -168.5 mV and Mean -167.3 mV, respectively.  

 
Figure 5: Box plot showing correlation between the five clusters and the interpreted dry weight fractions of coal, siderite and 
cobined illite and kaolinite. 

Figure 4: Box plot showing correlation between the five clusters and the difference 
between shallow and deep resistivity as well as spontaneous potential 
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In StudyWell-1 an elemental log (Lithoscanner) was acquired as well. We use the interpreted mineralogy form this 
elemental log to obtain as first pass lithological interpretation for the clusters. It has to be noted that the interpreted 
mineralogy is model based and dependents on the model assumptions (e.g. for StudyWell-1 there seems to be the 
assumption that there are two clay phases: Kaolinite and Illite). Further, this interpretation is based on a proprietary 
algorithm that was not available to the authors.  
Figure 5 shows the correlation of the clusters to the interpreted coal, siderite and combined illite and kaolinite dry 
weight fractions. Cluster 4 shows a strong correlation to coal (median value of 0.37) with the other cluster containing 
virtually no coal. At the same time Cluster 4 is void of siderite. Cluster 2 shows the strongest correlation to siderite 
(median value of 0.06) with Clusters 1 and 5 containing some siderite, albeit at very low weight fractions (median 
values of 0.01 and << 0.01, respectively). Considering the bulk of the data points, the following clusters have 
descending median values of combine illite and kaolinite dry weight fractions: Cluster 3 (0.45), Cluster 5 (0.32) and 
Cluster 1 (0.17). Cluster 2 has a median value of combine illite and kaolinite dry weight fractions of 0.45 as well, but it 
should be noted that the data points assigned to this cluster are just 4% of the data points in StudyWell-1 for the 
Springbok interval. 
 
 
Cluster Interpretation and Distribution 
 
Based on the signatures of the nuclear logs and the correlation with other logs as shown above we arrived at a 
preliminary interpretation (i.e. prior to sampling) of the clusters: 
 

• Cluster 1: Clastic rock with prominent mud invasion and distinct spontaneous potential signature 
   (possible high permeability rock), low natural gamma ray signature, low clay content 

 
• Cluster 2:	  Rock with significant siderite mineralization or siderite concretions 

 
• Cluster 3: Clastic rock with limited to no mud invasion, relatively high natural gamma ray 

     signature, high clay content 
 

• Cluster 4: Intervals with coal bands 
 

• Cluster 5: Clastic rock, in terms of mud invasion and clay content intermediate to Clusters 1 and 
   3, low natural gamma ray signature 

 
The distribution of the clusters differs between the study wells. Figure 6 shows the relative proportions of the clusters in 
StudyWell-1 and in all study wells combined.  Clusters 2 and 4 have minor relative proportions (~5%) in all study 
wells. The relative proportions of Clusters 1, 3 and 5 can differ significantly from well to well. 
 
 

 
Figure 6: Relative proportions of clusters in StudyWell-1 and all study wells combined.  
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CONCLUSIONS 

 
We used the k-means clustering algorithm to subdivide our dataset into five clusters. This cluster analysis incorporates 
information from four different wireline logs in contrast to cut-off based methods that usually rely on one or two 
wireline logs. This allowed us to achieve the main objectives of our cluster analysis. Firstly, the bulk of the data points 
from the Springbok interval is subdivided into three clusters. This would not have been possible with a classical cut-off 
based method or a smaller number of clusters. Secondly, siderite and coal rich intervals can be easily identified. 
The cluster analysis allowed us to sample and eventually analysis a representative set of constituency lithologies of the 
Springbok Sandstone. The differentiation between Clusters 1 and 5 is particular helpful and not possible with four 
cluster or a GR / RHOB cut off. For example Cluster 5 is a somewhat ‘unremarkable’ cluster in terms of the nuclear 
wireline log responses, yet 30% of the data points in the five study wells are assigned to this cluster and the 
hydrogeological indictors show considerable spread. Moving forward, our analysis will “ground truth” our preliminary 
cluster interpretation in regard to the total clay content and shed light on the influence of the actual clay type on 
hydrogeological properties. 
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